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Abstract— In this paper, we discuss the locomotion control
for the two-wheeled inverted pendulum (TWIP) mobile robot.
The robot in consideration involves two independent driving
wheels sharing the same axle as well as one inverted pendulum
in the middle acting as the main body. Instead of considering
the entire TWIP mobile robot as a whole, following the idea
of Dynamic Model Decomposition, we decompose the robot
into the body and the two wheels, with interaction forces and
moments connecting them. The effect is that we can thus enjoy
lower-dimensional dynamics for each subsystem while their
composition maintaining the equivalence to the full-order robot
model. Based on that, we further propose a corresponding
model predictive control framework via quadratic program-
ming, which considers linearly approximated body dynamics
with constrained wheel reaction forces as inputs. The overall
methodology was successfully implemented on a TWIP mobile
robot in the simulation environment. The simulation results
show that the robot is capable of station keeping, disturbance
rejection, velocity tracking, and path following.

I. INTRODUCTION

The intelligent robot system investigated in this paper is
a dynamically-stable wheeled mobile robot with two driving
wheels and an inverted pendulum acting as the body, thus the
so-called two-wheeled inverted pendulum (TWIP) system. It
has been widely applied in many fields due to its compact
structure, great maneuverability, high energy efficiency, etc.
In terms of a mobility mechanism, the robot needs to be
capable of some basic movement actions, e.g., advance,
reverse, and steering, and most importantly in the meanwhile,
the robot must always keep its balance from falling down.
The robot is a typical underactuated system since it only has
two control inputs, i.e., the left and right wheel actuators,
while it has three degrees of freedom (DoFs) under the
condition of pure rolling without slipping, e.g., the left and
right wheel rotation angles as well as the body tilt angle. The
characteristics of underactuated system, nonholonomic con-
straint, nonlinear dynamics, etc., challenge the researchers
to come up with a sound locomotion control strategy for the
TWIP mobile robot system.

While classic control theories are no more effective for
the TWIP system with such complexity, numerous studies
of advance control approaches have been undertaken. The
dynamics of the TWIP system is highly nonlinear. How-
ever, it is often possible to obtain a linearly approximated
model around the operating point, where the deviations of
the states and controls are assumed small. Several linear
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controllers were proposed accordingly, e.g., a linear stabi-
lizing controller based on Routh–Hurwitz stability criterion
was designed in [1], motion control using linear-quadratic
regulator was proposed in [2], and the design technique of
pole placement was used in [3]. There also exist significant
efforts devoted to many other control strategies, e.g., partial
feedback linearization [4], sliding mode control [5], fuzzy
control [6], neural network-based motion control [7], and
adaptive backstepping control [8].

Within robotics, the model predictive control (MPC) tech-
nique has been placed under the spotlight recently due to its
great power to plan and stabilize complex dynamic motions
[9], [10]. It usually involves solving a trajectory optimization
(TO) problem in real-time, which determines the control
sequences over a receding prediction horizon into the future.
As a result, the overall system is able to act in advance.
Another particular advantage of MPC is its capability of
addressing various physical constraints, e.g., torque limit
and contact friction, which is critical in practice but cannot
be handled with the above-mentioned methods. Some MPC
approaches to the TWIP system have been reported. [11]
managed to balance the TWIP robot based on the linearly
approximated model around the upright configuration. [12]
was further able to perform trajectory tracking with feedback
linearization. However, the framework is either too simple to
explore robot full capability or unnecessarily complicated.

The descriptiveness of the dynamic model being used in
MPC inevitably affects the system performance. On one
hand, the sophisticated full-body dynamics suffers solving
time issue. On the other hand, the oversimplified model
may not be applicable to more complicated maneuvers.
Lately, a novel idea has been proposed to explore the robot
dynamics from a different perspective, i.e., Dynamic Model
Decomposition (DMD) [13]. Instead of considering the entire
robot as a whole, DMD decomposes the robot into the body
and the rest, with interaction forces and moments connecting
them. The effect is that the problem becomes more tractable
since we can enjoy lower-dimensional dynamics for each
subsystem while their composition is still equivalent to the
full-order model. This approach has already been proven
effective in MPC for dynamic legged locomotion. In order
to investigate its generality, in this paper, we apply the
same methodology to the TWIP robot. Specifically, we first
decompose the robot into the body and the two wheels.
Based on that, we design a corresponding MPC framework,
which considers linearly approximated body dynamics with
constrained wheel reaction forces as inputs. These forces
need to respect the wheel kinematics and dynamics, actuator
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Fig. 1. The TWIP mobile robot is decomposed into (a) the body and (b)
the two wheels, with interaction forces and moments connecting them.

TABLE I
TWIP MOBILE ROBOT PARAMETERS

Symbol Parameter Value [Unit]
mb Body mass 15 [kg]
mw Wheel mass 2.5 [kg]
Ixx Body x principal moment of inertia 1.56 [kg·m2]
Iyy Body y principal moment of inertia 1.26 [kg·m2]
Izz Body z principal moment of inertia 0.33 [kg·m2]
Iψ Body yaw moment of inertia Varying
Iw Wheel axle moment of inertia 0.013 [kg·m2]
W Distance between two wheels 0.5 [m]
L Distance between body and wheel axle 0.5 [m]
R Wheel radius 0.1 [m]

capability, terrain condition, etc. The robot reference track-
ing TO problem can then be formulated into a favorable
quadratic program (QP), which can be solved efficiently and
thus implemented in real time.

The rest of this paper is organized as follows. Following
DMD, Section II decomposes the TWIP mobile robot into the
body and the two wheels. Section III elaborates the proposed
locomotion MPC framework. To evaluate the performance,
several simulations, e.g., station keeping, disturbance rejec-
tion, velocity tracking, and path following, were successfully
tested and simulation results are discussed in Section IV.
Section V concludes the paper with potential future work.

II. ROBOT MODELING

As shown in Fig. 1, a typical TWIP mobile robot has three
main parts, two identical wheels and an intermediate body.
The body involves a chassis carrying an actuator to drive
each wheel. All the parameters are listed in Table I.

Assuming the two wheels are always rolling purely on the
flat ground without slipping, the TWIP system has essentially
three DoFs subject to the nonholonomic constraints. Let us
define the vector of generalized coordinates as follows:

q :=
[
ϕ, θr, θl

]⊤
, (1)

where ϕ is the body pitch angle and θj is the rotation angle
of the wheel with the index j = r or l, indicating the wheel
on the right or left. The equations of motion of the TWIP

mobile robot take the form of

M(q)q̈ +C(q, q̇) + F (q̇) +G(q) = Bτ , (2)

where M(q) stands for the inertia matrix, the vector C(q, q̇)
captures Coriolis and centrifugal forces, F (q̇) represents the
vector of viscous friction forces, G(q) describes the vector
of gravitational forces, and the constant matrix B defines
how the actuation torques τ :=

[
τr, τl

]⊤
enter the model.

The entire robot is further decomposed into three subsys-
tems, the body and the two wheels, to be implemented in
the proposed MPC framework via DMD.

A. Body Modeling

Considering negligible cornering forces [3], the free body
diagram of the TWIP body can be developed subject to the
interaction forces and moments with the wheels, as shown
in Fig. 1a. Let us define the body state vector as

xb :=
[
sb, zb, ψ, ϕ, ṡb, żb, ψ̇, ϕ̇

]⊤
, (3)

where sb is the straight-line position of the body center of
mass (CoM), zb describes the body CoM height, ψ is the
yaw angle. Specifically, we have the following kinematic
relationships involved:

ψ =
R

W
(θr − θl) , (4a)

zb = L cosϕ, (4b)

sb =
R

2
(θr + θl) + L sinϕ, (4c)

if we assume sb, ψ, θr, and θl all start with zero. Define the
vector of external forces and moments acted on the body as

ub :=
[
hr, hl, vr, vl, τr, τl

]⊤
, (5)

where hj and vj are the components of the interaction force
in the horizontal and vertical directions with the wheel j,
respectively. The body dynamics can thus be written as

mbs̈b = H, (6a)
mbz̈b = V −mbg, (6b)

Iψψ̈ =
W

2
(hr − hl) , (6c)

Iyyϕ̈ = VL sinϕ−HL cosϕ+ T , (6d)

where H = hr + hl, V = vr + vl, T = τr + τl, and g is
the gravitational acceleration. Note that the body moment of
inertia in the yaw direction Iψ depends on the body pitch
angle ϕ:

Iψ (ϕ) = Ixxsin
2ϕ+ Izzcos

2ϕ. (7)

For the sake of MPC viability, the nonlinear rotational
dynamics (6c) and (6d) is desired to be linearly simpli-
fied. Assuming ϕ will not change substantially under well-
controlled locomotion, we can thus consider it as a constant,
e.g., ϕ(t) = ϕ(tc) := ϕc, for a short period over the MPC
prediction horizon, where ϕc is the body pitch angle at
current time tc, which will be updated for each MPC iteration
and can be presumably estimated or directly measured. As



a result, the body dynamics (6) can be approximated as a
continuous-time linear time-invariant system as follows:

ẋb = Abxb +Bbub +Gb (8)

for a short time horizon, where the matrix Bb depends on
ϕc, i.e., Bb(ϕc). (8) can be further discretized as

xb[k + 1] = Abxb[k] +Bbub[k] + Gb (9)

for MPC implementation later, where the matrices

Ab = eAb∆t, (10a)

Bb =
(∫ ∆t

0

eAbτdτ
)
Bb, (10b)

Gb =
(∫ ∆t

0

eAbτdτ
)
Gb, (10c)

the index k ∈ N, and ∆t is the sampling period.

B. Wheel Modeling
Based on the free body diagram of the wheel as shown in

Fig. 1b, let us define the state vector of the wheel j as

xj :=
[
sj , zj , θj , ṡj , żj , θ̇j

]⊤
, (11)

where sj is the straight-line position of the wheel CoM, zj
describes the wheel CoM height, and specifically, we have
the following kinematic relationships involved:

zj = 0, (12a)
sj = Rθj . (12b)

Let us now define the vector of external forces and moments
acted on the wheel j as

uj :=
[
hj , vj , τj , fj , nj

]⊤
, (13)

where fj and nj are the components of the ground reaction
force in the tangential and normal directions, respectively.
The dynamics of the wheel j can thus be written as

mws̈j = fj − hj , (14a)
mwz̈j = nj − vj −mwg, (14b)

Iwθ̈j = −fjR− τj . (14c)

(14) is linear and it can be easily converted into the state-
space form as follows:

ẋj = Ajxj +Bjuj +Gj , (15)

which can be further discretized as

xj [k + 1] = Ajxj [k] +Bjuj [k] + Gj , (16)

similar to (9) and (10).

III. MODEL PREDICTIVE CONTROL

This section elaborates the proposed MPC framework for
the TWIP mobile robot. Starting from the current state, the
goal is to determine an optimal actuation torque control
strategy over a finite time horizon while satisfying the
constraints on the states and controls, so as to guide the robot
body along the reference trajectory. We are able to formulate
this TO problem into a QP, which can be solved efficiently
and thus implemented in an MPC fashion.

A. Decision Variables

Given the prediction horizon T , the total number of time
steps N = 1+ T/∆t, define the set of decision variables as

χ := {xb[N ],xb[k],ub[k],xj [N ],xj [k], fj [k], nj [k] |
j = r, l, k = 1, . . . , N − 1} , (17)

where xb[k] and ub[k] are the body state vector and corre-
sponding external force input, while xj [k], fj [k], and nj [k]
are the state vector of the wheel j and corresponding ground
reaction force components at the kth time step.

B. Cost Function

For robot reference tracking problem, the very common
quadratic function

J =

N∑
k=1

e⊤b [k]Q[k]eb[k] +

N−1∑
k=1

τ⊤[k]R[k]τ [k] (18)

is used, where the body error state eb[k] := xref
b [k] − xb[k]

and xref
b [k] is the body state reference, while Q[k] and R[k]

are the diagonal positive semi-definite weighting matrices.
As a result, J will be minimized in terms of overall tracking
errors and control efforts in the least-squares sense.

The direct application of whole-body controllers to non-
minimum phase systems, in fact, can be problematic, as
pointed out in [14]. For example, in terms of the TWIP
mobile robot, in order to move forwards, the wheels first
need to accelerate backwards to achieve a certain body pitch
angle and should only then speed up forwards. In its standard
form, however, the proposed MPC would fail to reproduce
this behavior since it will not minimize the cost function
(18). In order to overcome the issue, a similar strategy used
in [15] is applied to regulate the wheel motion. In particular,
the body pitch angle reference is automatically generated
based on the difference between the reference and actual
body straight-line positions and velocities:

ϕref[k] = kp
(
sref
b [k]− sb(tc)− ṡb(tc) · (k − 1)∆t

)
+

kd
(
ṡref
b [k]− ṡb(tc)

)
(19)

for k = 1, . . . , N , where kp and kd are the nonnegative
proportional and derivative coefficients, respectively, which
can be experimentally tuned. As a consequence, the overall
system will be able to respond with the desired motion, e.g.,
first moving backwards for a certain body pitch angle and
then driving forwards.

C. Constraints

Note that all the following constraints are linear in terms
of the decision variables (17).

1) Initial Condition Constraint: The TWIP mobile robot
body and wheel states at the first time step should coincide
with the current measurements:

xb[1] = xb(tc), (20a)
xj [1] = xj(tc), (20b)

for j = r, l.



2) Dynamics Constraint: The TWIP mobile robot body
and wheel states need to obey their corresponding system
dynamics (9) and (16):

xb[k + 1] = Abxb[k] +Bbub[k] + Gb, (21a)
xj [k + 1] = Ajxj [k] +Bjuj [k] + Gj , (21b)

for j = r, l and k = 1, . . . , N − 1.
3) Kinematics Constraint: Several kinematics constraints,

in terms of both position and velocity, need to be imposed
to limit as well as connect the body and wheel states. Since
the wheels are assumed to always have contact with the flat
ground, (12a) gives

zj [k] = 0, (22a)
żj [k] = 0, (22b)

for j = r, l and k = 1, . . . , N .
The wheels are also supposed to have pure rolling motion

without slipping, and thus (12b) suggests

sj [k] = Rθj [k], (22c)

ṡj [k] = Rθ̇j [k], (22d)

for j = r, l and k = 1, . . . , N .
The body yaw angle and wheel rotation angles are con-

nected by (4a), which induces

ψ[k] =
R

W
(θr[k]− θl[k]) , (22e)

ψ̇[k] =
R

W

(
θ̇r[k]− θ̇l[k]

)
, (22f)

for k = 1, . . . , N .
The body CoM height and pitch angle are constrained by

the nonlinear equation (4b). It can be optimally linearized at
ϕ = ϕc using OLQP [16], which results in

zb[k] = L cosϕc + a∗ (ϕ[k]− ϕc) , (22g)

żb[k] = a∗ϕ̇[k], (22h)

for k = 1, . . . , N , where a∗ is the optimal linear gain. Note
that OLQP linear approximation works for a larger region of
interest than the conventional Jacobian linearization method.

The body straight-line position and wheel rotation angles
need to satisfy the nonlinear equation (4c). Similarly, it can
be optimally linearized at ϕ = ϕc via OLQP, which yields

sb[k]=
R

2
(θr[k] + θl[k]) + L sinϕc + b∗(ϕ[k]− ϕc), (22i)

ṡb[k]=
R

2

(
θ̇r[k] + θ̇l[k]

)
+ b∗ϕ̇[k], (22j)

for k = 1, . . . , N , where b∗ is the optimal linear gain.
Note that in practice, the velocity and position kinematics

constraints are equivalent if we assume the current robot
states for the first time step always satisfy both of them.
As a result, only one of them needs to be imposed. Besides,
according to our experience, the MPC can still work well
without considering (22i) and (22j), which essentially con-
nect the body and the two wheels kinematically. Although
the MPC model would deviate from the actual one without
them imposed, it is always correct at the first time step, thus
the overall system is prevented from divergence.

4) Other Constraints: Several other constraints also need
to be taken care of so as to meet the physical requirements.
To prevent the wheels from slipping, the static friction and
the unilateral normal force should satisfy

nj [k] ≥ 0, (23a)
|fj [k]| ≤ µsnj [k] ⇒ −µsnj [k] ≤ fj [k] ≤ µsnj [k], (23b)

for j = r, l and k = 1, . . . , N−1, where µs is the coefficient
of static friction between the wheel and ground. Note that
(23a) is already embedded in (23b) and thus can be removed.

The actuator cannot exceed its capability in terms of
actuation torque and velocity:

τmin ≤ τj [k] ≤ τmax (23c)

for j = r, l and k = 1, . . . , N − 1, as well as

ωmin ≤ θ̇j [k]− ϕ̇[k] ≤ ωmax (23d)

for j = r, l and k = 1, . . . , N .

D. Complete Formulation

The complete QP formulation of the proposed MPC frame-
work can thus be summarized as follows:

minimize
χ

Cost Function (18)

subject to Initial Condition Constraint (20)
Dynamics Constraint (21)
Kinematics Constraint (22)
Other Constraints (23)

(24)

The central idea of the proposed MPC framework is to
regulate the robot body motion via real-time TO, which can
be formulated into a favorable QP, with constrained wheel
reaction forces and moments as inputs. These forces and
moments need to respect the wheel kinematics and dynamics,
actuator capability, as well as terrain condition.

IV. SIMULATION RESULTS

The proposed MPC framework was implemented on the
TWIP mobile robot introduced in Section II, simulated using
MATLAB’s ode45 function with g = 9.81 m/s2 and µs =
0.8. The QP (24) was solved using MATLAB’s quadprog
function at a fixed conservative frequency of 100 Hz with
N = 6, ∆t = 0.1 s, τmax = −τmin = 12 N·m, and ωmax =
−ωmin = 35 rad/s. Note that the weighting matrices in (18)
might vary for different applications. The optimal solution
of the actuation torques at the first time step, i.e., τ∗r [1] and
τ∗l [1], was used directly on the robot. Several simulations
were tested to evaluate the MPC performance, demonstrated
in the video attachment.

A. Station Keeping & Disturbance Rejection

In this test, the robot was commanded to balance in place.
As seen in Fig. 2, the robot was released slightly out of
balance but was able to quickly correct its body orientation
via its wheel motion. Later to gauge the overall system
robustness in terms of disturbance rejection, starting from
t = 2 s, an external force with a magnitude of 120 N and



Fig. 2. Station keeping and disturbance rejection. The figure compares the
robot reference and actual body pitch angles, yaw angles, and straight-line
velocities, as well as shows the commanded actuation torques. The shaded
areas indicate both the magnitude and duration of the disturbances.

a duration of 100 ms was applied to the top of the body at
some random location for every two seconds, until t = 12 s.
The push was forceful enough to immediately speed up the
body velocity over 1 m/s, but the robot was able to quickly
regain its balance and recover within around two seconds.
Finally, a continuous external force of 25 N was exerted on
the body from t = 14 s to t = 18 s, the robot was still
able to keep balance by leaning its body against the push,
as shown in Fig. 3. Although the ground is considered to
be always horizontal in the MPC model, the ability to resist
a constant external disturbance indicates the overall system
is also capable of operating on an inclined plane, where the
tangential component of the gravitational force can be just
treated as a constant external disturbance.

B. Velocity Tracking

In this test, the robot was commanded to track both body
straight-line velocity as well as yaw angle rate. As seen in
Fig. 4, at the beginning, the robot was commanded to track
some straight-line velocity step reference by increment of
0.45 m/s up to 1.35 m/s at a spell of 2 s until it was ramped

Fig. 4. Velocity tracking. The figure compares the robot reference and
actual body pitch angles, yaw angle rates, and straight-line velocities, as
well as shows the commanded actuation torques. Note that the steady-state
pitch angle is larger than the reference in order to compensate the friction.

back down to zero from t = 8 s within one second. Later
starting from t = 11 s, with a desired constant straight-line
velocity of −0.5 m/s, the robot was further commanded to
track some yaw angle rate triangular reference for a duration
of 8 s. The robot was able to track the reference well and it is
first interesting to observe that its body naturally bent in the
moving direction even with a constant zero reference in order
to fight against the friction. Furthermore, in response to (19),
in order to move in some direction, the robot however started
with a quick opposite movement, causing its body to lean
towards the goal direction due to inertia, and then reversed its
wheels and accelerated. Lastly, the nature of MPC was able
to make the robot act in advance for an overall better tracking
performance. Note that a velocity calibration needs to be
performed in order to compensate for the steady-state error
if the corresponding position reference is not considered.

C. Path Following

Having demonstrated the capability of reference tracking,
we finally tested if the overall system was able to follow
some predefined path. As seen in Fig. 5, a fairly tough path

Fig. 3. Screenshots of station keeping and disturbance rejection.



Fig. 5. Robot reference and actual paths with random screenshots.

Fig. 6. Path following. The figure compares the robot reference and actual
body pitch angles, yaw angles, and straight-line velocities, as well as shows
the commanded actuation torques.

was interested, composed of four quarter circles with the
same radius of 1.43 m. With a desired constant body straight-
line speed of 0.5 m/s, this Cartesian path was then converted
into the yaw angle reference, as shown in Fig. 6. The robot
was commanded to follow the path autonomously starting
from t = 1 s and the overall path following performance was
considered good enough, in the light of the sharp corners in
the path and thus the sudden changes in the reference. Note
that there were no extrinsic sensors accounted so no robot
location information was used.

V. CONCLUSION

In this paper, a novel model predictive control (MPC)
framework is designed for the two-wheeled inverted pen-
dulum (TWIP) mobile robot. Specifically, using Dynamic
Model Decomposition, the TWIP mobile robot is decom-

posed into three lower-dimensional subsystems, the body
and the two wheels with interaction forces and moments
connecting them. Based on that, an MPC framework can
be formed via quadratic programming, which considers lin-
early approximated body dynamics with constrained wheel
reaction forces as inputs. The proposed methodology was
successfully verified on a TWIP mobile robot in the simula-
tion environment. The robot managed to resist external dis-
turbances while balancing, track velocity reference, as well
as follow some predefined path. The future work includes
implementation on the real hardware platforms.
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